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Extended Stokes series: laminar flow 
through a loosely coiled pipe 

By MILTON VAN DYKE 
Department of Mechanical Engineering, Stanford University, Stanford, California 94305 

(Received 5 August 1976 and in revised form 2 June 1977) 

Dean’s series for steady fully developed laminar flow through a toroidal pipe of small 
curvature ratio has been extended by computer to 24 terms. Analysis suggests that 
convergence is limited by a square-root singularity on the negative axis of the square 
of the Dean number. An Euler transformation and extraction of the leading and 
secondary singularities at  infinity render the series accurate for all Dean numbers. 
For curvature ratios no greater than &, experimental measurements of the laminar 
friction factor agree with the theory over a wide range of Dean numbers. In  particular, 
they confirm our conclusion that the friction in a loosely coiled pipe grows asymptoti- 
cally as the one-quarter power of the Dean number based on mean flow speed. This 
contradicts a number of incomplete boundary-layer analyses in the literature, which 
predict a square-root variation. 

1. Introduction 
An attractive alternative to finite-difference computation, at  least in simple 

problems, consists of extending a perturbation series to high order by delegating to the 
computer the rapidly mounting arithmetic labour, Contemporary digital computers 
can, in a few minutes, calculate hundreds of terms for a linear problem and dozens of 
terms for a nonlinear one (Van Dyke 1975). 

The range of applicability of the resulting series is ordinarily very limited. The 
author has discussed (Van Dyke 1974) how it can be extended by analysing the 
coefficients to unveil the analytic structure of the solution, and on that basis applying 
a variety of devices to improve the utility of the series. Most of these techniques are 
borrowed from physicists working on the statistical thermodynamics of critical pheno- 
mena (Gaunt & Guttmann 1974). Several additional ones are introduced in this paper. 

A likely field of application for this three-step scheme of extension, analysis and 
improvement is to the solution of the Navier-Stokes equations. In  particular, we 
consider here expansions for low Reynolds numbers. We understand Reynolds number 
in a generalized sense as any dimensionless measure of the relative importance of 
nonlinear and viscous effects, so that it may be the Rayleigh or Grashof number, 
Taylor number, etc., and in the present case the Dean number. 

Such expansions have been termed Stokes series, because they are based on Stokes’s 
investigation of the effect of viscosity on the motion of a pendulum, and on his 
linearized form of the Navier-Stokes equations. Of course Stokes and his successors 
discovered that for uniform flow past an object the low-Reynolds-number approxi- 
mation is a singular perturbation. Since we do not know how to automate the method 
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of matched asymptotic expansions, we must restrict attention to regular perturba- 
tions: flows that are sufficiently confined by boundaries, or decay rapidly enough with 
distance. Then the solution of the Navier-Stokes equations is found as a power series 
in the Reynolds number. 

For the linearized Oseen equations, the author has extended the Stokes series of 
Goldstein for the drag of a sphere to 24 terms (Van Dyke 1970), and found that from 
it can be extracted the drag a t  infinite Reynolds number. This raises the hope that 
likewise for the Navier-Stokes equations a Stokes series can be modified so as to con- 
verge for large Reynolds number. This objective might be thought unnecessarily 
ambitious, since high Reynolds numbers are the special province of boundary-layer 
theory. However, the laminar flows amenable to Stokes expansions are often just 
those where the boundary-layer structure is not clear because it involves colliding 
layers and internal jets, or the boundary-layer theory cannot be used at a11 because 
the flow separates. Furthermore, higher approximations in boundary-layer theory 
have proved disappointingly limited, and finite-difference computations become 
unreliable as the Reynolds number is increased. We see in this paper that the extended 
Stokes series provides, in afavonrable problem, the most effective way of spanning the 
whole range of Reynolds numbers for laminar flow. 

We examine one of the simplest problems that is realistic enough to have been the 
subject of experiments.? This is the steady fully developed laminar flow through a 
coiled pipe of circular cross-section. All previous analyses have been simplified by 
neglecting the helicity of the coil; furthermore Dean ( 1  928) discovered that to a good 
approximation for loose coiling the motion depends not separately upon the Reynolds 
number R and the ratio a / L  of the radius of the cross-section to the coiling radius, but 
only upon the product R2(a/L)  -a similarity parameter that has subsequently, in 
several variants, been called the Dean number; we adopt both these approximations. 

Previous work on this problem can be divided into four categories. First, experi- 
ments have been conducted by, among others, White (1929), Taylor (1929), Adler 
(1934), It6 (1959) and Mori & Nakayama (1965). Second, Dean (1927,1928) developed 
a perturbation about Poiseuille flow through a straight pipe that yields the Stokes 
series being considered here, and carried it to the fourth power of the Dean number. 
Topakoglu (1967) retained higher-order terms in the curvature ratio a/L ,  to obtain a 
double power series in the curvature ratio and Dean number, as did Larrain & Bonilla 
(1970) in extending the series to 14th order by computer. Third, boundary-layer 
analyses for high Dean number have been proposed by Adler (19341, Barua (1963)) 
Mori & Nakayama (1965)) It6 (1969) and Smith (1975, 1976). Fourth, numerical 
solutions have been calculated by McConalogue & Srivastava (1  968), Truesdell & 
Adler (1970), Akiyama & Cheng (1971), Austin & Seader (1973), Collins & Dennis 
(1975), and others. Truesdell & Adler and Austin & Seader include the effects of finite 
curvature ratio. 

t The simplest problem of all is probably the steady plane flow inside E circle due to 
translation of the boundary with a speed that varies with angle, for which Kuwahara & Imai 
(1969) carried the Stokes series to eighth order by computer, and Conway (1978) carried it to 
22nd order; but experiments would be difficult. 
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FIGURE 1. Notation for coiled pipe. 

2. Summary of Dean’s analysis 
We adopt Dean’s co-ordinate system (figure 1) and his normalization: lengths are 

referred to the radius a of the pipe, and the velocity w down the pipe to the maximum 
speed W, = Ga2/4p in a straight pipe under the same axial pressure gradient 

G = L-1 ap/a+, 

but the stream function $ for the secondary motion is referred to the kinematic 
viscosity v (which means that transverse velocities are referred to v/a).  Then in the 
approximations of negligible helicity and loose coiling the Navier-Stokes equations 
for incompressible fluid reduce to [Dean 1928, equations (1 5)-( 1 8)] 

Here V2 = a2/ar2 + r-l a/ar + r-2 P/ae2 is the Laplacian in the transverse plane, and 
K is Dean’s similarity parameter 

K = 2 ( y )  W,a -=- a G2a7 
L 8p2v2L‘ 

The boundary conditions require that 

20 = $ = a$/ar = 0 at r = 1. (2.4) 

If the pipe is straight, K is zero, and the solution is that for Poiseuille flow, with 
w = 20, E 1 - r2 and II, = 0. Dean treats the curved pipe as a systematic perturbation 
of the straight one by expanding in powers of K :  

I zu = w,, + KZU, + K ~ u ’ ,  + . . . , 
$= K$l+IC2$r,+... . (2.5) 

5-2 
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Substituting into the equations and boundary conditions yields a sequence of succes- 
sively more complicated linear problems that can be solved in turn to give 

(2.6) 
@1 = &(4r - 9r3 + 6r5 - r i )  COB 8, 

w1 = a)B(& - r3 + ir5 - ir7 + &r9) sin 8, 

and so on. Dean quotes part, of the solution for v2, and then, remarking that ‘the 
difficulty of successively finding the functions becomes rapidly greater ’, gives without 
details the result to order K4 for the ratio of flux through the curved pipe to that 
through the corresponding straight pipe under the same pressure gradient:? 

1 

m 

11 = 0 
&IF, = C ~ ~ ( & g K ) ~ n  = 1 -0*03058(,+,K)2+0~01195(,f~K)4+ ... . ( 2 . 7 )  

Experimenters measure thefrictionfactor h and, following White ( 1 929) ,  usually plot 
the friction vatio, the resistance in the curved pipe divided by that in a straight pipe 
carrying the same flux. This is easily seen to be the reciprocal of the flux ratio (2.7), 
arid is accordingly given in Dean’s approximation by 

m 

hJh, = (Fc/<)-l = s bn(,+&)2n 
? l = O  

= 1 + 0.03058( - 0.01 1 00(K+ah’)4 + . . . . (2.8) 

In extending Dean‘s expansion, we sha.11 examine in particular this reciprocal pair of 
Stokes series. 

3. Computer extension of Dean’s series 
Numbers are kept within range on the computer by incorporating the powers of 

576 that appear in (2 .7)  and (2.8) int,o the expansion, rewriting Dean’s series ( 2 . 5 )  as 

By induction we find that the functions ujn and $n depend upon the co-ordinates as 
follo\\-s: 

(3.2) I J J + l  cos ( 2 i  - 2 ) 6  r2j-2, n even, 

I .I sin ( 2 i  - 2)8 r2j-2, n even, 

‘(’n = C 3 Enii sin (2i - 1 p v 2 j - 1 ,  

1C.n = i -1  C j=l 2 C n i j  

odd, 

( 2 ;  - ~ ) O ~ V - I ,  n odd. 

j=1 

Here I and J are the greatest integers less than or equal to + ( n + 2 )  and + ( 7 n + 2 ) ,  
respectively. We work also with the corresponding expressions for V2wn, V4+bn and 
C2$,. 

t Later writers have mistakenly disputed these coefficients. Adler (1934) claims that the 
second should be 0.03018, and Sankaraiah & Rao (1973) change the third to 0.012167 without 
comment; but we have confirmed the second as 1541/50400 = 0.0305754 by hand, and our 
computer calcnlntions as well as those of Lnrrain & Bonilla (1970) give t,lre tliircl as 0.01193. 
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n 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11  
12 

1~0000000000 
- 0'0305753968 

0.011931 1827 

0.0042384991 

0.0022 124224 
- 0.001 7 101745 

0.001 3610001 

0.0009176324 
-0.0007712689 

0.0006560579 

- 0.0065846067 

- 0'0029771923 

- 0.001 1076549 

1~00000 
0.03058 

- 0~01100 
0.00588 

- 0.00373 
0.00259 

- 0.00191 
0.00147 

- 0.001 17  
0.00095 

- 0.00078 
0.00066 

- 0.00056 

1~00000 
- 0.03 162 
- 0.01886 
- 0.01338 
- 0.01034 
- 0.00840 
- 0'00707 
- 0.00609 
- 0.00534 
- 0.00475 
- 0.00428 
- 0.00389 
- 0'00356 

1~00000 
0.03162 
0-01986 
0.01461 
0.01 160 
0.00964 
0.00826 
0.00723 
0.00643 
0.00579 
0*00527 
0.00484 
0.00447 

1~00000 
0.01838 
0.00581 
0,00278 
0.00161 
0.00103 
0.00072 
0.00052 
0.00040 
0.00031 
0.00026 
0~00021 
0.00018 

TABLE 1. Coefficients in Stokes series for flux ratio. 

f n  

- 0.033237 
0.042766 

- 0'006885 
- 0.001477 
- 0.000530 
- 0.000250 
- 0'000140 
- 0'000089 
- 0'000060 
- 0.000043 
- 0.000031 
- 0~000022 
- 0'000016 

We have written a FORTRAN program of some 500 statements that  calculates 
successively the coefficients in these expressions. I n  outline, it consists of the following 
segments: 

(1) With ?a even, compute the coefficients of V4@n from (2.2).  
(2)  Compute the coefficients Cnii of $,. 
(3)  Compute the coefficients of V2$,,. 
(4) Increase n by one to become odd, and compute the coefficients of V2w, from (2.1).  
(5) Compute the coefficients of w,. 
(6)  Return to step 1 with n odd and continue. 
Because the program consists mainly of DO loops nested five deep, the computing 

time is found to increase with between the fifth and sixth powers of the number of 
terms. The solution was computed up to  KIG in 8 min on the IBM 360/67 machine, 
and later up to K24 in 5 min on the CDC 7600 machine, which is an order of magnitude 
faster and has the additional advantage of providing 28 significant figures in double- 
precision arithmetic. To this order the solution is represented by some 8200 non-zero 
coefficients Cnij in (3.2) and 8900 of the Enii. 

Comparison of single- and double-precision computations shows that not quite one 
significant figure is lost from these coefficients, as a result of truncation and round-off 
errors, each time n is increased by two. We are therefore confident that our coefficients 
are all correct to 16 figures. 

The coefficients in Dean's series (2.7) for the flux ratio are listed t o  10 decimal places 
in the second column of table 1. Up to  n = 7 they agree precisely with the results of 
Larrain & Bonilla (1970) to  the seven places that they published. The resulting 
coefficients for the inverse series (2.8) are given in the third column, but to  fewer 
figures because more can be derived if necessary from t'hose of the direct series. 

4. Convergence of Dean's series 
Supposing that the critical Reynolds number is the same for a curved as for a 

st,raight pipe, Dean (1928) estimated that laminar flow would be of practical interest 
for values of K up to  perhaps lo5. Remarkably, the experiments of White (1929) 
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0 0.1 0.2 

FIQURE 2. Domb-Sykes plot for extended Dean series (2.7).  +, plotted v3. l /n;  
0, plotted vs. l / (n  + i) ; __ , asymptote for a = 4 and 9 - 1  = 0.967. 

showed that curvature stabilizes the flow, so that it appeared to be laminar even above 
K = lo6. On the other hand, Dean suggested that his result is ‘probably not valid when 
K exceeds 400’, though he also remarked that the error in (2.7) is not likely to be 
serious when K = 576; and subsequent writers (e.g. Larrain & Bonilla 1970; Sankaraiah 
& Rao 1973) have concluded that the series converges up to K = 576. 

We can estimate the radius of convergence W accurately using a graphical ratio test 
and other devices for analysing series (Van Dyke 1974; Gaunt & Guttmann 1974). 
First, we observe that the coefficients in (2.7) alternate regularly in sign; this indicates 
that the nearest singularity, which limits the convergence, lies on the negative real 
axis of (s+-6K)2. Now if that singularity is algebraic, with exponent a, the ratio an/an_, 
of successive coefficients will be linear in 1/n for large n: 

an 
an-1 n 

We therefore plot an/an_, vs. 1 /n - the Domb-Sykes plot - and fit a straight-line 
asymptote. Its intercept on the an/an-, axis yields an estimate for the reciprocal of the 
radius of convergence, and its slope (or the intercept on the l / n  axis) indicates the 
exponent u. 

This plot, shown by the crosses in figure 2, is nearly straight, and clearly has an 
intercept less than unity; thus Dean’s series converges for K somewhat greater than 
576. Gaunt & Guttmann (1974) point out that a coincident weaker singularity will give 
a multiple of l/n2 as the next term in (4.1); it  can be cancelled, and the Domb-Sykes 
plot straightened, by a small shift in n. The circles in figure 2 show that plotting vs. 
l / ( n  + $) instead of 1/n straightens the plot considerably. Fitting a straight line as 
shown then makes it unmistakably clear that the radius of convergence is 

( g + - K K ) 2  = (0*967)-l. 

To refine this value, we fit a polynomial of degree N in ( n  + *)-I to the last N + 1 
point,s in figure 2. This is most easily done by forming a Neville table of the an/an-l, 
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as described by Gaunt & Guttmann (1  974). The terminal slopes amply confirm the 
square-root singularity to at  least five figures, and successively higher-order intercepts 
on the vertical axis give 

9P1 k 0.9670, 0.96693, 0.966854, 0.966861, 0.966856, 0.966859, 

0.966859, 0.966858, 0.966858, 0.966858, 0.966858, . . . . (4.2) 

To substantiate and further refine this result, we have applied a variety of techniques, 
including analysis of the inverse series (2.8). These all give consistent results. For 
example, if we fix the terminal slope to correspond to the square-root singularity and 
then form a new Neville table, all polynomials in (n + *)-I of from the seventh to the 
twelfth degree give 9-l = 0.96685840. Thus we conclude that Dean's series (2.7) for 
the flux ratio converges up to 

(-&aK)2 = (0.96685840)-', K = 585.78878. (4.3) 

The question is sometimes asked whether the series for other quantities will have 
the same radius of convergence. It seems plausible that they will; and this was con- 
firmed by analysing the series for four local quantities: 

(i) the axial velocity w down the centre of the pipe, 
(ii) the transverse velocity across the centre of the pipe, 
(iii) the transverse skin friction (or vorticity) at  the top of the pipe, 
(iv) the gradient of skin friction a t  the innermost point. 
In  each case the Domb-Sykes plot is just as smooth as figure 2, and clearly points to 

the same radius of convergence. The slopes also indicate that the singularity is a 
square root for each quantity, this agreement arising only because the square root is 
not the leading term in the expansion about the nearest singularity but is preceded by 
a constant. Furthermore, Domb-Eykes plots for the limited number of coefficients 
computed by Larrain & Bonilla (1970) make clear that the radius of convergence is 
also the same for higher powers of the curvature ratio a/L ,  whereas the order of the 
singularity for the coefficient of (a/L)" is apparently Q - m. 

5. Analytic continuation to K = co 
The nearest singularity has no apparent physical significance. We therefore banish 

it to infinity, and increase the range of convergence for physically significant K by 
applying an Euler transformation, recasting the series in powers of 

Thus Dean's series (2.7) for the flux ratio becomes 

and the inverse series (2.8) becomes 

The coefficients c ,  and d,  up to terms in $2 are given in table 1. 
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I I I I I I 
0 0.1 0.2 

l / (n  + f) 
FIGURE 3. Domb-Sykes plots for Dean series after Euler transformation. 0, direct 

series (5.2); +, inverse series (5.3);  - , asymptotes for a = 

The new coefficients have fixed signs, indicating that the nearest singularitynowlies 
on the positive real axis of e. This suggests that, just as for the Oseen drag of a sphere 
(Van Dyke 1970)) we have succeeded in continuing the solution analytically to 
infinite K ,  which corresponds to e = 1. This is confi.rmed by Domb-Sykes plots for the 
new direct and inverse series (figure 3), and by the associated Neville tables, which 
show the nearest singularity to lie at  e = 1 to within four or five significant figures. 

By contrast, estimation of the exponent a of that singularity is a delicate matter, to 
which we have devoted much effort. Figure 3 makes clear that its value is very small; 
we show the terminal slopes for the direct and inverse series with a = i$, which is the 
value according to all the boundary-layer models in the literature. However, the 
corresponding Neville tables are irregular; and various attempts to substantiate this 
value, for example by admitting coincident weaker singularities, have invariably led 
to inconsistencies. 

The most glaring inconsistency arises from attempting to estimate the coefficient C 
of the singularity at 8 = 1 by completing the series (TTan Dyke 1974) on the assumption 
that a = &, that is, by fitting the Taylor expansion of C( 1 -&)I%- to successive terms in 
the Euler-transformed Dean series (5.2). This yields the sequence of estimates 

c M 1,  0.379, 0.494, 0.548, 0.581, 0.603, 0.618, 0.631, 

0.640, 0.647, 0.653, 0.658, 0.663, ... . (5.4) 

These plot almost linearly 08. l/n, extrapolating to C = 0.71. On the other hand, 
fitting C-l( 1 - .)-i$- to the corresponding inverse series (5.3) yields 

C M 1 ,  2.635, 2.273, 2.146, 2.083, 2.047, 2.025, 2,010, 

2.000, 1.994, 1.990, 1.988, 1.987, ... , (5 .5 )  

and when plotted ws. l / n  these extrapolate instead to C = 1.98. 
We have concluded after considerable study that this discrepancy can be resolved 

only by abandoning the exponent a = &,, and with it the traditional boundary-layer 
model of Adler (1934) and his successors. In  fact, we have determined a by requiring 
that the completion coefficients for the direct and the inverse series be compatible. 
Figure 4 shows that their product extrapolates linearly in l / n ,  and t'ends to unity for 
a = -1- 

2 0 '  
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0 0.1 0.2 

1 In 
FIauRE 4. Extrapolation of product of completion 

coefficients for direct and inverse series. 

This conclusion is so surprising that we have sought to corroborate it in a number of 
ways. Of these we mention three devices that were applied to the Euler-transformed 
series (5.2) and (5.3). First, we applied to the direct and inverse series the technique 
of ' critical-point renormalization ' (Hunter & Baker 1973), which enables one to 
estimate the difference between the exponents for two different functions known to be 
singular at the same point. This involves forming a new series for a 'generating 
function' whose exponent is one less than the difference of the original two exponents. 
In  our case this new exponent is 2cx- 1 ,  and then making a Domb-Sykes plot of the 
new coefficients, and a Neville table, yields the sequence of estimates 

a 0.0555, 0-0550, 0.0535, 0-0523, 0.0512, 0.0503, ... . (5.6) 

(We dare proceed no further, though the next value is still closer to &, because the 
upper halves of Neville tables have been found generally to be erratic in this problem.) 

Second, we show in figure 5 a magnified Domb-Sykes plot with n shifted by the 
4 that was found to straighten the plot for the original series (figure 2 ) .  The ratios are 
seen to lie close to the lines for a = &, and to twine slightly about them: a phenomenon 
that was encountered in exaggerated form in the corresponding plot for the Oseen drag 
of a sphere (Van Dyke 1970, figure 2). 

Third, we have formed the series for the logarithm of the flux ratio q / F s .  Then 
comparing with the expansion of In ( 1  - yields the sequence of estimates 

a x 0.03162, 0.03872, 0.041 97, 0,04384, 0.04505, 0.04588, 0.04649, 

0.04694, 0.04729, 0.04756, 0.04777, 0.04793, . . , . (5.7) 

Except for the first three, these are fitted to within 4 yo by 

a = &(l - 1/24 .  (5.8) 

One might object to & as being a rather unlikely exponent. However, we shall see 
that when converted to quantities appropriate to large values of K it  corresponds to 
an exponent having the more plausible value &.- 
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0'94 r 

I I I I I I I I 
0.08 0.10 0.12 0.14 

I / ( f l + + )  

FIGURE 5. Magnified Domb-Sykes plot. 0, direct series; + , inverse series; 
-, asymptotes for a = -&. 

An independent analysis of the original Dean series (2.7), which does not depend on 
our estimate (4.3) of its radius of convergence, is provided by Pad6 approximants. 
A Pad6 approximant is the ratio of two polynomials that, when expanded, agrees with 
a power series to as many terms as possible. Such rational fractions are known to have 
remarkable properties of analytic continuation (Baker 1965). A Pad6 approximant 
can simulate a singularity only by the poles that are the zeroes of its denominator; it  is 
therefore more effective t o  treat a function with a branch point by first forming the 
series for its logarithmic derivative. Because we are concerned with the singularity at  
K2 = 00, we form the [ N / ( N  + l)]  approximants, whose denominators are one degree 
higher than the numerabors. Thus from just three terms of Dean's series (2.7) we form 
the [O/ l ]  approximant: 

N- 0*04077 as K Z - + ~ .  (5.9) 
F, 0.03058 

In- = 
d - 

- d(&K)2 F, 1 + 0.74987(&K)2 (&K)2 
The residue 0.04077 a t  (s+BK)2 = co is to be compared with our estimate a = & for 
the exponent. Likewise, forming the [+I, [#I, ..., [%I approximants gives 

(5.10) 
This sequence is evidently (with the slightly erratic convergence that is typical of Pad6 
approximants) approaching & rather than A. 

a z 0.04077, 0.04666, 0.04821, 0.04856, 0.04858, 0.04867, ... . 

6. The secondary singularity at K = 00 

Convinced that the dominant singularity is a multiple of (1  - E)--L%, we undertake to 
extract it, and thereby improve the rate of convergence of the series. Multiplicat,ive 
extraction yields 

8./4 = (1  - ~ ) i %  C enen 
n=O 

= (1  - &)A ( 1  + 0.01 8386 + 0.00581~~ + . . . ). (6.1) 
The first 13 coefficients en are list.ed in table 1 .  
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I I I I I 

l / ( n  + 4, 
0 0.1 0.2 

FIGURE 6. Domb-Sykes plot for Dean series after Euler transformation and 
multiplicative extraction of dominant singularity. -, asymptote for u = 1. 

A new Domb-Sykes plot, with n again shifted by Q (figure 6), shows that the 
secondary singularity is also located a t  E = 1. The slope clearly corresponds to the 
exponent a = 1. Such a non-negative integral value indicates that logarithmic terms 
intervene, in this case a multiple of (1 - E )  In (1 - E ) .  The same conclusion is a conse- 
quence of (5.8), which in fact corresponds to the more definite result 

(6.2) $IF,  = A (  1 -e)A[l +A( 1 - E )  In (1 - E )  + ...I. 
Evaluating the sum in (6.1) after completing i t  according to (8.2) gives A = 1.0343. 

Thus we recast the series finally as 

(6.3) I W 

&/F, = 1*0343(1-~)i% 1+~5(1-c) ln(1-s )+  2 f n E n  , [ n=O 

where the first 13 coefficients f, are list,ed in table 1. A new Domb-Sykes plot oscillates 
too much to be relied upon, but suggests that the tertiary singularity may be a multiple 
of (1 - c)21n (1 - E ) .  Further refinement is unnecessary, however, because this last 
version of Dean’s series yields a t  least four-figure accuracy for all values of K .  

Our difficulties in determining the exponent a can now be understood by studying 
(6.2) as a model. Its expansion in powers of E yields a Donib-Sykes plot that twines 
about the asymptote just like figure 5, and its Neville table is equally irregular up to 
the first 13 terms. However, as the number of terms is increased to 20, the exponent 
a = & unmistakably asserts itself. Thus our elaborate analysis in 5 5 could probably 
have been replaced by a simple ratio test if we had been able to extend Dean’s series 
(3.1) to the 40th rather than only the 24th power of K. 



140 M .  Van Dyke 

K 

50 
312.5 
576 
800 

1012.5 
4000 

15625 
22931 
45000 
62500 
80000 

130050 
250000 
285012.5 
765625 
87781 2.5 

1562500 
2000000 

D 

28.28 
70.71 
96 

113.14 
127.28 
252.98 
500 
605.52 
848.53 

1000 
1131.37 
1442.50 
2000 
2135.46 
3500 
3747.67 
5000 
5656.85 

K 

5.00 
12-46 
16.58 
19.26 
21.40 
37.98 
65.70 
76.61 

100.5 
114.4 
126.5 
153.7 
199.2 
210.3 
311.8 
329.8 
414.7 
458.5 

TABLE 2. Friction factor from modified Dean series (6.3) 
as function of three variants of Dean number. 

Llh 
1.000 
1.008 
1.024 
1.039 
1.051 
1.178 
1.345 
1.398 
1.492 
1.545 
1.581 
1.660 
1.774 
1-795 
1.985 
2.009 
2.131 
2.181 

7. Comparison with other results for friction ratio 
We have worked with the parameter K of Dean, which is convenient for theoretical 

purposes although it  is based on a hypothetical reference speed. Two other versions of 
the 'Dean number' are in common use in the 1iterature.t McConalogue & Srivastava 
(1968) introduced a parameter D that is related to that of Dean simply by D = 4K4. 
White (1929) introduced an essentially different parameter K that is more useful in 
experiment (and also at  high Dean number) because it is based on the actual mean 
velocit. R down the pipe, according to 

K -(z) 2aV a 4 . 
V 

It is therefore related to Dean's K and McConalogue & Srivastava's D through the - - 
flux ratio itself, according to 

K 
F c K  - 2%- 
l i . ,= (8K)B-  D' 

Values of the frict.ion ratio h,/h, = (E/&)-l given by our modified Dean series (6.3) 
are shown in table 2, t,ogether wit,h the corresponding values of D and K .  The values of 
K chosen are those for which finite-difference solutions are available. 

In  terms of White's parameter K ,  Dean's series (2.7) for the flux ratio becomes 

&/& = 1 - 0.03058(~~/288)~ + 0.0081 9(~'/288)* + . . . . (7.3) 
We have seen that this converges for K < 16.7. To compare with the boundary-layer 
analyses, we also convert our asymptotic expression to White's parameter. We have 

t The notation is confusingly non-uniform; for example, the K of Adler (1934) and Larrain & 
Bonilla (1970) is our (and Dean's) &:K; the K of Mori & Nakayama (1965) and It6 (1969) is our 
(and White's) K ;  the K of Smith (1976) is our t K  and his D is our 2-4D; and the ND, of Truesdell 
& Adler (1970) and Austin & Seader (1973), t,he k of Hasson (1955) and Rarua (1963), and the D of 
Prandtl (1931) are our K. 
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FIGURE 7 .  Experimental friction ratios for loose coiling. 0, White (1929); 
+, 0 ,  It6 (1959); ~ , present theory. 
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seen that at high Dean number the flux ratio decreases as 1-0343( 1 
(5.1), this means that 

Combining this with (7.2) yields the asymptotic relationship between White's and 
Dean's parameters: 

Hence the flux ratio decays as 2-1212~-4, or the friction ratio grows asymptotically as 

In  view of 

Fc/Fs - 1.9562K-i% as K -+ CO. (7.4) 

K - 1.3833Kf. (7.5) 

(7.6) A,/A, = (&/4)-' - 0.47136~a. 

We see from table 2 that this agrees with our complete expression to within 1 yo above 
K = 30. 

We can now compare our results for the friction factor with previous experiments, 
boundary-layer analyses and numerical solutions. 

Figure 7 shows, in the logarithmic plot introduced by White (1929), a comparison 
with experiments on pipes with curvature ratios no greater than &, . The agreement is 
excellent, the measured friction ratios lying on our curve within experimental scatter 
until they break away sharply a t  the onset of turbulence. They seem to cover enough 
of the straight portion to confirm our conclusion that the friction varies asympto- 
tically as K). 

Figure 8 shows how the situation changes when more tightly coiled pipes are 
included. The envelope of experimental points, which presumably corresponds to 
steady laminar flow, then rises continuously above our curve. It is well fitted by the 
equation &/As = 0 . 0 9 6 9 ~  * + 0.556, (7.7) 

which Hasson (1955) proposed to correlate White's measurements in the range 
30 < K < 2000.t 

f On the other hand, Prandtl (1931) fitted the experiments with Ac/A8  = 0 . 3 7 ~ 0 ' ~ ~ .  
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FIGURE 8. Experimental friction ratios for various curvature ratios. 0, White (1929); 0 ,  Adler 
(1934); +, It6 (1959); --, present theory; ---, correlation of Hasson (1955). 

A square-root variation with K is also predicted by all the boundary-layer analyses 
in the literature. Despite significant differences in the basic assumptions and methods 
of approximation, they all give practically the same asymptotic result: 

0.1064~)  (Adler 1934), 

L[ 0.09185~4 (Barua 1963), 

A, 0.1080~t  (Mori & Nakayama 1965), (7.8) I 0.1033~)  (It6 1969). 

The results of finite-difference solutions by three different investigators are shown 
in figure 9. They agree well with our theory up to about K = 100, then rise above it in 
accord with the measurements for tighter coiling, and tend towards the boundary- 
layer results. In  fact, Collins & Dennis (1975) have fitted their values with 

h,/A, = 0.1028~4 + 0.380. (7.9) 

8. Discussion 
It is an unexpected result of our analysis that the friction factor in a loosely coiled 

pipe grows asymptotically as the one-fourth power of the Dean number based on mean 
axial speed. This conclusion appears to be confirmed by experiments for curvature 
ratios smaller than +, whereas more tightly coiled pipes tend towards a square-root 
variation. 

This suggests that the asymptotic behaviour may depend on the manner in which 
the Dean number tends to infinity. Dean’s expansion (2.7) is based on the double limit 

K = =(:)’ fixed (and small), 
n/L  --f 0, 
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FIGURE 9. Friction ratio from finite-difference solutions. 0, Collins & Dennis (1975), a / L  + 0 ;  
+, Austin & Seader (1973), a / L  = 0.01; 0 ,  Truesdell & Adler (1970), a / L  = 0.01; --, present 
theory; ---, Hasson’s (1955) correlation of experiments. 

and we have subsequently extracted the limit K -+ 00. On the other hand, flow at high 
Dean number in a pipe of moderately small curvature ratio would correspond to the 
single limit 2aW/v + co, a / L  fixed (and small). 

An alternative explanation of the departure of the experiments from our curve 
might be that for more tightly coiled pipes the steady laminar flow is succeeded not by 
turbulent A ow, but by an intermediate regime of unsteady laminar motion, with higher 
friction. Introducing coloured fluid into the fully developed flow in glass pipes with 
L / a  = 18.7 and 31.9, Taylor (1929) found that at  a certain speed the coloured band 
began to vibrate in an irregular manner, but retained its identity through at least one 
whole turn of the helix; and the motion became fully turbulent only at an appreciably 
higher speed. 

However, neither of these explanations can account for the discrepancy in the 
boundary-layer results, for they are all based on the assumptions of vanishing curvature 
ratio a / L  and steady flow. We conclude that they are incorrect. 

The various boundary-layer analyses differ among themselves in basic structure, in 
particular in the provision that they make for recirculation of the boundary layer that 
is supposed to flow inward on the walls. Adler (1 934) believes that the boundary layers 
on the two halves of the torus collide at  theinnermost circle, separate there, and form 
a re-entrant jet that moves outward through the core; but he makes no attempt to 
incorporate that phenomenon into his analysis. Likewise, I t6 (1969) finds that his 
boundary-layer solution breaks down in the immediate vicinity of the innermost ring, 
but does not inquire into the subsequent course of the fluid. On the other hand Mori & 
Nakayama ( 19651, believing that collision of the boundary layers is unreasonable, 
deliberately suppress it. Smith (1975), assuming that a solution with attached 
boundary layers exists, shows that the velocity would vanish in non-analytic fashion 
a t  the innermost circle. Finally, Barua (1  963) claims that the boundary layers separate 
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from the wall at about 27" from the inside, but does not consider how that would alter 
his assumed core flow. 

If the conventional boundary-layer model is wrong, how is it to be corrected? It will 
apparently contain multiple regions, scaled according to various powers of the Dean 
number; but we have been unable to devise a consistent structure. In  principle, we 
could extract it from our series; but each local flow quantity has to be analysed by the 
laborious process described in 04 5 and 6. We have, however, treated in this way the 
velocity components a t  the centre of the pipe. The axial velocity w down the centre 
(referred to W,) is found to decay asymptotically as K-*, just as in the boundary-layer 
models. On the other hand, the transverse velocity across the centre (referred to ./a) 
appears to grow as K, in disagreement with the K* from the boundary-layer theories. 
This would seem to support Adler's suggestion of a re-entrant jet. 

Most of our disagreement with the numerical solutions (figure 9) is also explained 
if the asymptotic behaviour depends on the limiting process, for the curvature ratio is 
finite (though small) except in Collins & Dennis's calculations. In  any case, it is likely 
that all the computations suffer from too large a mesh. At the higher Dean numbers, 
where discrepancies appear, only a few points were used within the boundary layer, 
In  a comparable finite-difference solution for a curved pipe of square cross-section, the 
calculations of Cheng, Lin & Ou (1976) show the friction ratio increasing approximately 
as ~4 up to K = 100, and thereafter rising much faster; but at just that point the values 
of the friction evaluated from the pressure gradient and from the wall shear begin to 
differ considerably, so that both values are suspect. 

We conclude that the technique of extending a Stokes series by computer and then 
analysing and improving it has, in this problem, yielded information that is not 
accessible by any other method. In  fact, the nature of steady fully developed flow in a 
loosely coiled pipe has been seriously misrepresented by both numerical solutions, 
which appear to suffer from inadequate mesh refinement at  the higher Dean numbers, 
and boundary-layer analyses, which have all been based on an incorrect model of the 
flow structure. 
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